skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, Xikun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Recently, remarkable progress has been made over large language models (LLMs), demonstrating their unprecedented capability in varieties of natural language tasks. However, completely training a large general-purpose model from the scratch is challenging for time series analysis, due to the large volumes and varieties of time series data, as well as the non-stationarity that leads to concept drift impeding continuous model adaptation and re-training. Recent advances have shown that pre-trained LLMs can be exploited to capture complex dependencies in time series data and facilitate various applications. In this survey, we provide a systematic overview of existing methods that leverage LLMs for time series analysis. Specifically, we first state the challenges and motivations of applying language models in the context of time series as well as brief preliminaries of LLMs. Next, we summarize the general pipeline for LLM-based time series analysis, categorize existing methods into different groups (\textit{i.e.}, direct query, tokenization, prompt design, fine-tune, and model integration), and highlight the key ideas within each group. We also discuss the applications of LLMs for both general and spatial-temporal time series data, tailored to specific domains. Finally, we thoroughly discuss future research opportunities to empower time series analysis with LLMs. 
    more » « less
  2. Free, publicly-accessible full text available December 1, 2025
  3. Pretraining a language model (LM) on text has been shown to help various downstream NLP tasks. Recent works show that a knowledge graph (KG) can complement text data, offering structured background knowledge that provides a useful scaffold for reasoning. However, these works are not pretrained to learn a deep fusion of the two modalities at scale, limiting the potential to acquire fully joint representations of text and KG. Here we propose DRAGON (Deep Bidirectional Language-Knowledge Graph Pretraining), a self-supervised approach to pretraining a deeply joint language-knowledge foundation model from text and KG at scale. Specifically, our model takes pairs of text segments and relevant KG subgraphs as input and bidirectionally fuses information from both modalities. We pretrain this model by unifying two self-supervised reasoning tasks, masked language modeling and KG link prediction. DRAGON outperforms existing LM and LM+KG models on diverse downstream tasks including question answering across general and biomedical domains, with +5% absolute gain on average. In particular, DRAGON achieves notable performance on complex reasoning about language and knowledge (+10% on questions involving long contexts or multi-step reasoning) and low-resource QA (+8% on OBQA and RiddleSense), and new state-of-the-art results on various BioNLP tasks. Our code and trained models are available at https://github.com/michiyasunaga/dragon. 
    more » « less
  4. Pattern-based methods have been successful in information extraction and NLP research. Previous approaches learn the quality of a textual pattern as relatedness to a certain task based on statistics of its individual content (e.g., length, frequency) and hundreds of carefully-annotated labels. However, patterns of good contentquality may generate heavily conflicting information due to the big gap between relatedness and correctness. Evaluating the correctness of information is critical in (entity, attribute, value)-tuple extraction. In thiswork,we propose a novel method, called TruePIE, that finds reliable patterns which can extract not only related but also correct information. TruePIE adopts the self-training framework and repeats the training-predicting-extracting process to gradually discover more and more reliable patterns. To better represent the textual patterns, pattern embeddings are formulated so that patterns with similar semantic meanings are embedded closely to each other. The embeddings jointly consider the local pattern information and the distributional information of the extractions. To conquer the challenge of lacking supervision on patterns’ reliability, TruePIE can automatically generate high quality training patterns based on a couple of seed patterns by applying the arity-constraints to distinguish highly reliable patterns (i.e., positive patterns) and highly unreliable patterns (i.e., negative patterns). Experiments on a huge news dataset (over 25GB) demonstrate that the proposed TruePIE significantly outperforms baseline methods on each of the three tasks: reliable tuple extraction, reliable pattern extraction, and negative pattern extraction. 
    more » « less